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Abstract. It has recently been shown that growth of a multilayer structure with one or more delta-layers
at high temperature leads to spreading and asymmetrization of the dopant distribution [see, for example,
E.F.J. Schubert, Vac. Sci. Technol. A. 8, 2980 (1990), A.M. Nazmul, S. Sugahara, M. Tanaka, J. Crystal
Growth 251, 303 (2003); R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X.
Zhang, Phys. Rev. B 54, 8769 (1996); E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins,
N.J. Sauer, J. Appl. Phys. 67, 1969 (1990); P.M. Zagwijn, J.F. van der Veen, E. Vlieg, A.H. Reader,
D.J. Gravesteijn, J. Appl. Phys. 78, 4933 (1995); W.S. Hobson, S.J. Pearton, E.F. Schubert, G. Cabaniss,
Appl. Phys. Lett. 55, 1546 (1989); Delta Doping of Semiconductors, edited by E.F. Schubert (Cambridge
University Press, Cambridge, 1996); Yu.N. Drozdov, N.B. Baidus’, B.N. Zvonkov, M.N. Drozdov, O.I.
Khrykin, V.I. Shashkin, Semiconductors 37, 194 (2003); E. Skuras, A.R. Long, B. Vogele, M.C. Holland,
C.R. Stanley, E.A. Johnson, M. van der Burgt, H. Yaguchi, J. Singleton, Phys. Rev. B 59, 10712 (1999);
G. Li, C. Jagadish, Solid-State Electronics 41, 1207 (1997)]. In this work analytical and numerical analysis
of dopant dynamics in a delta-doped area of a multilayer structure has been accomplished using Fick’s
second law. Some reasons for asymmetrization of a delta-dopant distribution are illustrated. The spreading
of a delta-layer has been estimated using example materials of a multilayer structure, a delta-layer and an
overlayer.

PACS. 73.40.Kp III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions –
73.40.Lq other semiconductor-to-semiconductor contacts, p-n-junctions, and heterojunctions – 66.30.-h
diffusion in solids – 85.40.Ry Impurity doping, diffusion and ion implantation technology

1 Introduction

Delta-doping of solid state structures is a prospective
approach for the refinement of micro- and optoelec-
tronic devices. The technological process is widely used,
for example, for refinement of parameters of Schottky
diodes [11,12], heterobipolar transistors [12] and is inten-
sively discussed in the literature (see, for example [1–12]).

The delta-doped area is a thin (with thickness approx-
imately equal to 1 monolayer) layer, which is produced
during epitaxial growth as a layer of a multilayer struc-
ture. During overgrowing of the delta-layers spreading and
asymmetrization of the dopant distribution take place.
Both processes lead to deviation of parameters of devices,
which include itself one or more delta-layers, from esti-
mated values.

In previous works (see, for example, [13] and the analo-
gous works of other authors) spreading and asymmetriza-
tion of delta-dopant distribution are explained by diffu-
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sion for the simplest limiting case (for constant diffusion
coefficient and symmetrical Gaussian initial distribution
with negligible half-width) and segregation. The expla-
nation has been obtained using microscopic analysis (i.e.
analysis of atom migration). However, when the number
of dopant atoms is large, microscopic analysis leads to
lengthy calculations of dopant distribution.

Dopant dynamics depends on dynamical properties of
the multilayer structure (for example, on the diffusion co-
efficient) and on the parameters of epitaxial growth (for
example, on velocity and temperature of growth). These
characteristics can be considered, when the number of the
dopant atoms is large. In this case one can use Fick’s laws.

The main aim of the present paper is the analysis of the
influence of dynamical properties of multilayer structure
and parameters of epitaxial growth on dopant redistribu-
tion during overgrowth of delta-doped areas. An accom-
panying aim to the previous one is development of the
approach for the description of dopant redistribution tak-
ing account of the macroscopical dynamical properties of
multilayer structures and parameters of epitaxial growth.
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Fig. 1. Multilayer structure GaAs/InGaAs/GaAs/GaAs with
δ-layer of manganese and overlayer of GaAs. Total thickness
of overlayer is a = vΘ, where Θ is time to complete overlayer
growth, v is growth velocity.

The third aim of the paper is an estimation of the spread-
ing of delta-dopant distribution for an example multilayer
structure (see Fig. 1).

2 Method of solution

We analyzed delta-dopant redistribution to explain
spreading and asymmetrization during overgrowing of a
doped area. Here the spatiotemporal distribution can be
described by Fick’s second law [14–16]

p(x)
∂N(x, t)

∂t
=

∂

∂x

[
D(x, N(x, t))

∂N(x, t)
∂x

]

= −∂J(x, t)
∂x

, (1)

where N(x, t) is the spatiotemporal distribution of dopant
concentration, J(x, t) is the spatiotemporal distribution of
the dopant flow, D(x, N(x, t)) and p(x) are the diffusion
coefficient of dopant in multilayer structure and porosity
of the multilayer structure respectively [14–16]. If proper-
ties of layers of the multilayer structure (see Fig. 1) differ
from each other (for example, densities of the layers could
differ from each other), then the diffusion coefficient and
porosity of multilayer structures depends on the coordi-
nate. Diffusion coefficient also depends on concentration.
The dependence can be approximated by the power law:
D(x, N(x, t)) = D(x) {1 + ζ[N(x, t)/P (x)]γ} [14]. Usually
the parameter γ is an integer in the interval 1 ≤ γ ≤ 3
(see, for example, [14]). P (x) is the limit of solubility of
the dopant in the multilayer structure.

The diffusion equation should be complemented by
boundary and initial conditions. The initial distribution
N(x, 0) = f(x) can be approximated by a Gaussian func-
tion. The half-width of the distribution at half-height is
equal to the half-width of a full number of monolayers in
the delta-layer. Boundary conditions near point x = 0 (see
Fig. 1) can be written in the form: J(−vt, t) = 0. Usually
the growth time Θ and growth temperature correspond
to small diffusion length. Therefore, the second boundary
condition can be written in the form N(L, t) = 0.

We determine a solution of the diffusion equation (1)
and analyze the solution of the dopant dynamics in mul-
tilayer structure during overlayer growth. Introducing the
following dimensionless coordinate, time and diffusion co-
efficients χ = (x + vt)/a, ϑ = tD0/a2 and ∆ = D(x)/D0

leads to simplification of analysis of dopant dynamics. The
introduction of the dimensionless values transforms equa-
tion (1) to the following form

p(χ, ϑ)
∂N(χ, ϑ)
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=

∂
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{
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[
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]}
− µp(χ, ϑ)

∂N(χ, ϑ)
∂χ

, (2)

where µ = va/D0. The boundary and initial conditions
for equation (1) can be written as

N(χ, 0) = f(χ), J(0, ϑ) = 0, N(Λ + Ξ, ϑ) = 0,

where Λ = L/a, Ξ = vaϑ/D0. One can neglect Ξ in com-
parison with Λ for the actual values of these parameters.
Therefore, the last boundary condition can be written in
the form: N(Λ, ϑ) = 0. Neglecting gives us the possi-
bility to analyze the dopant dynamics in a moving area
with length Λ. Numerical approaches give us a solution
of the diffusion equation with higher precision. But the
analytical solution yields a visual solution of the equa-
tion. Therefore, both approaches (analytical and numeri-
cal) have been used to analyse the dopant dynamics. We
now transform equation (2) to the form

N(χ, ϑ) =

χ∫
Λ

1
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v∫
0
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dudv

+
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0
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∂u
dudv

−ξ
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Λ

[
N(v, ϑ)
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]
dv. (3)

We use the method of averaging of function correc-
tions [17] for the solution of equation (3). Substitution
of the the average value of dopant concentration
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and/or the average value of the partial derivatives of
dopant concentration
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instead of dopant concentration N(χ, ϑ) and/or partial
derivatives of dopant concentration gives us the possibility
to calculate the first-order approximation to the dopant
concentration N1(χ, ϑ) in order to use the method of av-
eraging of function correction in the classical form. Let us
substitute the solution of the diffusion equation with the
average value of diffusion coefficient D0 and porosity p0 in-
stead of average value of dopant concentration in order to
calculate the first-order approximation of dopant concen-
tration. This substitution leads to accelerated convergence
of the method of averaging of function corrections. The so-
lution of the diffusion equation with averaged parameters
D0 and p0 can be written in the form

N(χ, ϑ) = 2
∞∑

n=0

Fn+0.5cn+0.5(χ)en+0.5(ϑ), (4)

where cn(χ) = cos(πnχ), Fn =
Λ∫
0

f(v)cn(v)dv, en(ϑ) =

exp(−π2n2ϑ). The first-order approximation to dopant
concentration N1(χ, ϑ), which corresponds to relation (4),
can be written in the form
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where sn(χ) = sin(πnχ), Gyn(χ, ϑ) =
χ∫
0

p(v, ϑ)yn(v)dv.

The second-order approximation of dopant concentration
can be calculated by standard substitution of the sum
α2 + N1(χ, ϑ) instead of dopant concentration N(χ, ϑ) in
equation (2) [17]. The substitution leads to the following
relation
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The parameter α2 can be determined from the following
expression [17]

α2 =
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, (7)
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p(u, ϑ)∂N1(u,ϑ)
∂λ dudvdϑ.

It can be shown that consideration of the second-order
approximation of dopant concentration, obtained by av-
eraging of function corrections, allows analysis of dopant
dynamics during overlayer growth without lengthy calcu-
lations.

Further let us analyze the dopant dynamics for differ-
ent regimes of epitaxial overlayer growth using the approx-
imation of dopant concentration. Good behavior of the
analytical solution of equation (1) in comparison with the
numerical one gives us the possibility to determine some
dependencies of dopant concentration on different param-
eters and to estimate approximately the spreading of the
delta-layer. Using numerical approaches leads to increased
precision of the spatiotemporal distribution of dopant con-
centration and estimation of delta-layer spreading.

3 Discussion

First of all let us consider the multilayer structure growth
regime, when a pause between finishing the delta-layer
growth and starting the overlayer growth takes a place.
The pause leads to dopant diffusion into the spacer dur-
ing the pause. Therefore, dopant distribution in the delta-
doped area will be initially asymmetrical. The initial
asymmetrization is, probably, the first reason for asym-
metrization of dopant distribution and could be accounted
here by considering an asymmetrical initial distribution.



254 The European Physical Journal B

Fig. 2. Dopant distribution in a δ-doped area taking account
the pause between finishing δ-layer growth and beginning over-
layer growth.

An example of spatial distribution of dopant with an
asymmetrical initial distribution is presented in Figure 2.
However, the asymmetrization indicates delta-layer degra-
dation. Therefore, the pause between finishing the delta-
layer growth and starting of overlayer growth should be
decreased. Let us consider further the limiting case of the
short pause regime.

The alternative classification of overgrowth regimes
could be considered with account of velocity and time
of overgrowth. The first regime of the second classifica-
tion is a regime with small value of the growth velocity
or short-time growth with large value of the growth veloc-
ity. In that case dopant concentration N(0, ϑ) is always
nonzero. Maximal growth time in that case could be es-
timated from the following expression:

√
D0Θ/p0 > vΘ.

The left side of the expression is an estimation of the dif-
fusion length of the dopant in the overlayer after finishing
the layer growth. The right side of the last relation is the
thickness of the overlayer, when the growth time is equal
to Θ. The inequality could be transformed to the form:
Θ < D0/p0v

2. Spatial distribution of dopant concentra-
tion in the multilayer structure (Fig. 1) for the considered
case is illustrated by Figure 3 (for the case, when dynam-
ical properties of the layers are equal to each other) and
4 (for the case, when dynamical properties of the over-
layer and spacer differ from each other). Temperature de-
pendence of diffusion coefficient and limit of solubility of
manganese in gallium arsenide are presented, for exam-
ple, in [18] and in references of reference [19], respectively.
We consider such time, velocity and temperature of over-
layer growth, that correspond to zero concentration of the
dopant in the quantum well.

The second regime of overlayer growth is regime of
long-time growth with large value of the growth veloc-
ity. Here the dopant concentration N(0, ϑ) is always zero.
Minimal growth time for consideration of the case could
be estimated from the following expression: Θ > D0/p0v

2.
Spatial distribution of dopant concentration for the case
is illustrated in Figures 5 (if the dynamical properties of
the multilayer layers are similar) and 6 (if the dynam-
ical properties of overlayer and spacer differ from each
other). Pair comparison of Figures 3 and 4, 5 and 6 illus-

Fig. 3. Spatial distribution of manganese concentration for the
regime of small value of growth velocity or short-time growth
with large value of the growth velocity of overlayer for equal dy-
namic properties of layers of the multilayer structure. Growth
temperature is equal to 300 ◦C, 400 ◦C and 450 ◦C (curves 1,
2 and 3 respectively).

Fig. 4. Spatial distribution of manganese concentration for the
regime of small value of growth velocity or short-time growth
with large value of the growth velocity of the overlayer with dif-
fering dynamic properties of layers of the multilayer structure.
Growth temperature is equal to 300 ◦C, 400 ◦C and 450 ◦C
(curves 1, 2 and 3 respectively).

trate, that the difference between dynamical properties of
overlayer and spacer leads to asymmetrization of spatial
distribution of dopant in the delta-doped area. The asym-
metrisation of dopant distribution due to the difference
between dynamical properties of the multilayer structure
layers (see Fig. 1) is, probably, the second route to asym-
metrisation of dopant distribution during overgrowth.

The analysis of dopant redistribution leads to the fol-
lowing conclusion: to decrease asymmetrization of delta-
dopant distribution the inequality D1/p1 > D2/p2 should
be achieved. Here D1 and p1 are the parameters of the
overlayer, D2 and p2 are parameters of the spacer.

Spatial distribution of dopant concentration depends
on the type of nonlinearity of multilayer structure mate-
rials. Dependencies of the dopant distribution on param-
eters γ and ζ are illustrated in Figures 7 and 8. One can
see from the figures, that increasing the parameters γ and
ζ leads to increasing spreading of the delta-layer. Figure 9
illustrates a comparison of quantities calculated in this
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Fig. 5. Spatial distribution of manganese concentration, for
the regime of long-time growth of the overlayer with large
growth velocity and equivalent to each other dynamic prop-
erties for the layers of the multilayer structure. Growth tem-
perature is 300 ◦C, 450 ◦C and 500 ◦C (curves 1, 2 and 3
respectively).

Fig. 6. Spatial distribution of manganese concentration for
the regime of long-time growth of overlayer with large growth
velocity for with differing dynamics properties of layers in the
multilayer structure. Growth temperature is 300 ◦C, 450 ◦C
and 500 ◦C (curves 1, 2 and 3 respectively).

paper and measured and presented (Ref. [2]) spatial dis-
tributions of manganese concentration in multilayer struc-
ture GaAs /InGaAs/GaAs/GaAs for different growth
temperature.

Further let us estimate the spreading of the delta-layer.
For the estimation we used two criteria. The first gives us
an estimation of the delta-layer spreading as a variation
of the half-width of the delta-layer at the half-height of
the maximal value of the dopant concentration. The sec-
ond criterion is known as the “equiareal rectangle”. The
second criterion is considered in detail, for example, in ref-
erences [20–23]. Both criteria lead to approximately equal
results. Dopant diffusion in the quantum well is usually
unwanted. Therefore, first of all we considered right-sided
spreading of the delta-layer. The dimensionless spreading
of the delta-layer η = d/b is presented in Figures 10 and 11
as functions of growth temperature and thickness of over-
layer, where d is real spreading, b is half-thickness of initial
distribution of dopant. One can see from the figures that

Fig. 7. Dependence of spatial distribution of manganese con-
centration on parameter γ. Growth temperature is 450 ◦C.

Fig. 8. Dependence of spatial distribution of manganese con-
centration on parameter ζ. Growth temperature is 450 ◦C.

Fig. 9. Comparison of calculations in this paper (solid lines)
and measured (Ref. [2]) spatial distribution of manganese con-
centration. Growth temperature is 220 ◦C (curves 1 and 4),
300 ◦C (curves 2 and 5) and 400 ◦C (curves 3 and 6).

increasing both parameters lead to a linear increase of the
spreading.

4 Conclusions

In the present paper the analysis of delta-dopant distribu-
tion spreading and asymmetrization in a multilayer struc-
ture during dopant overgrowth has been accomplished
using Fick’s second law. The law allows consideration
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Fig. 10. Dependence of dimensionless spreading of δ-layer
on growth temperature for different values of overlayer thick-
nesses. Curve 1 corresponds to 50 nm, curve 2 corresponds to
100 nm, curve 3 corresponds to 150 nm, curve 4 corresponds
to 200 nm.

Fig. 11. Dependence of dimensionless spreading of δ-layer
on thickness of overlayer for growth temperatures of 300 ◦C
(curve 1), 400 ◦C (curve 2), 450 ◦C (curve 3) and 500 ◦C
(curve 4).

of dopant diffusion during overgrowth. This leads to a
complete explanation of the spreading and asymmetriza-
tion of dopant distribution without considering any addi-
tional processes, such as segregation. Analysis of dopant
redistribution during overgrowth gives several conditions
for decrease of asymmetrization of delta-dopant distri-
bution. Spreading of a delta-layer in a multilayer struc-
ture during growth of an overlayer has been estimated.
As an example of materials we considered a delta-
layer of manganese (1.7 monolayer), multilayer structure
GaAs/InGaAs/GaAs/GaAs and overlayer of GaAs (see
Fig. 1). The estimation of spreading has been analyzed as
a function of the growth temperature and growth time.

This work has been supported by Contract (project
02.442.11.7342).
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